
16

Part II

Classification and logistic

regression

Let’s now talk about the classification problem. This is just like the regression
problem, except that the values y we now want to predict take on only
a small number of discrete values. For now, we will focus on the binary

classification problem in which y can take on only two values, 0 and 1.
(Most of what we say here will also generalize to the multiple-class case.)
For instance, if we are trying to build a spam classifier for email, then x(i)

may be some features of a piece of email, and y may be 1 if it is a piece
of spam mail, and 0 otherwise. 0 is also called the negative class, and 1
the positive class, and they are sometimes also denoted by the symbols “-”
and “+.” Given x(i), the corresponding y(i) is also called the label for the
training example.

5 Logistic regression

We could approach the classification problem ignoring the fact that y is
discrete-valued, and use our old linear regression algorithm to try to predict
y given x. However, it is easy to construct examples where this method
performs very poorly. Intuitively, it also doesn’t make sense for hθ(x) to take
values larger than 1 or smaller than 0 when we know that y ∈ {0, 1}.

To fix this, let’s change the form for our hypotheses hθ(x). We will choose

hθ(x) = g(θTx) =
1

1 + e−θT x
,

where

g(z) =
1

1 + e−z

is called the logistic function or the sigmoid function. Here is a plot
showing g(z):



17

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

g(
z)

Notice that g(z) tends towards 1 as z → ∞, and g(z) tends towards 0 as
z → −∞. Moreover, g(z), and hence also h(x), is always bounded between
0 and 1. As before, we are keeping the convention of letting x0 = 1, so that
θTx = θ0 +

∑n

j=1 θjxj.
For now, let’s take the choice of g as given. Other functions that smoothly

increase from 0 to 1 can also be used, but for a couple of reasons that we’ll see
later (when we talk about GLMs, and when we talk about generative learning
algorithms), the choice of the logistic function is a fairly natural one. Before
moving on, here’s a useful property of the derivative of the sigmoid function,
which we write as g′:

g′(z) =
d

dz

1

1 + e−z

=
1

(1 + e−z)2
(

e−z
)

=
1

(1 + e−z)
·
(

1− 1

(1 + e−z)

)

= g(z)(1− g(z)).

So, given the logistic regression model, how do we fit θ for it? Following
how we saw least squares regression could be derived as the maximum like-
lihood estimator under a set of assumptions, let’s endow our classification
model with a set of probabilistic assumptions, and then fit the parameters
via maximum likelihood.



18

Let us assume that

P (y = 1 | x; θ) = hθ(x)

P (y = 0 | x; θ) = 1− hθ(x)

Note that this can be written more compactly as

p(y | x; θ) = (hθ(x))
y (1− hθ(x))

1−y

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

L(θ) = p(~y | X; θ)

=
m
∏

i=1

p(y(i) | x(i); θ)

=
m
∏

i=1

(

hθ(x
(i))
)y(i) (

1− hθ(x
(i))
)1−y(i)

As before, it will be easier to maximize the log likelihood:

ℓ(θ) = logL(θ)

=
m
∑

i=1

y(i) log h(x(i)) + (1− y(i)) log(1− h(x(i)))

How do we maximize the likelihood? Similar to our derivation in the case
of linear regression, we can use gradient ascent. Written in vectorial notation,
our updates will therefore be given by θ := θ + α∇θℓ(θ). (Note the positive
rather than negative sign in the update formula, since we’re maximizing,
rather than minimizing, a function now.) Let’s start by working with just
one training example (x, y), and take derivatives to derive the stochastic
gradient ascent rule:

∂

∂θj
ℓ(θ) =

(

y
1

g(θTx)
− (1− y)

1

1− g(θTx)

)

∂

∂θj
g(θTx)

=

(

y
1

g(θTx)
− (1− y)

1

1− g(θTx)

)

g(θTx)(1− g(θTx))
∂

∂θj
θTx

=
(

y(1− g(θTx))− (1− y)g(θTx)
)

xj

= (y − hθ(x)) xj



19

Above, we used the fact that g′(z) = g(z)(1− g(z)). This therefore gives us
the stochastic gradient ascent rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x
(i)
j

If we compare this to the LMS update rule, we see that it looks identical; but
this is not the same algorithm, because hθ(x

(i)) is now defined as a non-linear
function of θTx(i). Nonetheless, it’s a little surprising that we end up with
the same update rule for a rather different algorithm and learning problem.
Is this coincidence, or is there a deeper reason behind this? We’ll answer this
when we get to GLM models. (See also the extra credit problem on Q3 of
problem set 1.)

6 Digression: The perceptron learning algo-

rithm

We now digress to talk briefly about an algorithm that’s of some historical
interest, and that we will also return to later when we talk about learning
theory. Consider modifying the logistic regression method to “force” it to
output values that are either 0 or 1 or exactly. To do so, it seems natural to
change the definition of g to be the threshold function:

g(z) =

{

1 if z ≥ 0
0 if z < 0

If we then let hθ(x) = g(θTx) as before but using this modified definition of
g, and if we use the update rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x
(i)
j .

then we have the perceptron learning algorithm.
In the 1960s, this “perceptron” was argued to be a rough model for how

individual neurons in the brain work. Given how simple the algorithm is, it
will also provide a starting point for our analysis when we talk about learning
theory later in this class. Note however that even though the perceptron may
be cosmetically similar to the other algorithms we talked about, it is actually
a very different type of algorithm than logistic regression and least squares
linear regression; in particular, it is difficult to endow the perceptron’s predic-
tions with meaningful probabilistic interpretations, or derive the perceptron
as a maximum likelihood estimation algorithm.


